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Steady axisymmetric creeping plumes above
a planar boundary. Part 1. A point source
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Asymptotic solutions are obtained for the rise of an axisymmetric hot plume from
a localized source at the base of a half-space filled with very viscous fluid. We
consider an effectively point source, generating a prescribed buoyancy flux B , and
show that the length scale of the plume base is z0 = (32πκ2ν/B), where ν and κ are
the kinematic viscosity and thermal diffusivity. The internal structure of the plume
for z � z0 is found using stretched coordinates, and this is matched to a slender-body
expansion for the external Stokes flow. Solutions are presented for both rigid (no-slip)
and free-slip (no tangential stress) conditions on the lower boundary. In both cases
we find that the typical vertical velocity in the plume increases slowly with height as
(B/ν)1/2[ln(z/z0)]

1/2, and the plume radius increases as (zz0)
1/2[ln(z/z0)]

−1/4.

1. Introduction
Steady plumes above a heated source are an important and canonical topic in

convection. The existence of localized plume structures in the Earth’s mantle (first
suggested by Morgan 1971) provides one motivation to study the case of infinite
Prandtl number. However, our results may have wider applications to other situations
involving very viscous fluids, for example in magma chambers and industrial processes
such as glass manufacture (Krause & Loch 2002).

There have been various investigations of viscous plumes with both constant
and temperature-dependent viscosity. These have involved experiments, numerical
simulations, and analytical models. For example, recent experimental work on viscous
plumes has included that of Kaminski & Jaupart (2003), who focused mainly on the
evolution of starting plumes, and Kerr & Mériaux (2004), who considered the effects
of an externally applied shear flow on the trajectory of a rising plume.

On the theoretical side, four previous studies of isoviscous plumes are of particular
relevance to the work presented here and in Part 2 of this study (Whittaker &
Lister 2006). A detailed analysis of an infinite-Prandtl-number plume at large
Rayleigh number in two-dimensional convection was carried out by Roberts (1977).
In particular, by coupling the motion of the plume to the thermal boundary layer
directly above a distributed source, Roberts found asymptotic relationships between
the Nusselt and Rayleigh numbers for a heated strip.

An isolated axisymmetric plume in an unbounded volume of large-Prandtl-number
fluid was studied by Worster (1986). There is no pure Stokes flow solution for an
isolated plume in an unbounded domain, for much the same reason that Oseen
corrections are required for the problem of an infinite translating cylinder (see Lamb
1911). Inertia is important in the far field, and is required to provide a normalization
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Figure 1. A definition sketch for the point-source plume under investigation, showing the
coordinates s, z, r and θ that will be used to describe it, the plume radius a(z), temperature
profile T (s, z), and the velocity in the fluid u.

for the interior flow. Worster (1986) derived a matched asymptotic expansion for
Pr � 1, comprising a viscous–buoyancy dominated plume, and an inertia–viscous
dominated outer flow.

Olson, Schubert & Anderson (1993) provide an idealized model for one of the
problems we consider in Part 2: the distributed source with a free-slip boundary
condition. Finally, the related problem of an axisymmetric convection cell with free-
slip walls has been considered by Umemura & Busse (1989). The cell was forced
by a fixed temperature difference between the horizontal boundaries, and matched
asymptotic solutions were derived for the interior flow, a central plume, and the
various boundary layers adjacent to the walls.

Various authors, including Olson et al. (1993) and Loper & Stacey (1983), have
also considered the structure of plumes with variable viscosity, with emphasis on their
application to mantle convection. Such studies have tended to concentrate on the case
of a very large viscosity contrast between the plume core and outer fluid. This leads
to the vertical motion being confined to a narrow conduit, surrounded by a much
wider thermal halo.

In this paper, we consider a steady isoviscous axisymmetric plume rising above
a plane boundary from a point source of specified buoyancy flux (see figure 1).
The problem is solved by considering separately a slender plume region (in which
boundary-layer approximations can be employed), and an outer Stokes flow (in
which the temperature is uniform). In Part 2, we consider the effects of a finite
source at large Rayleigh number, and examine the thermal boundary layer that
forms above it. The assumption of constant viscosity is obviously a restriction, but it
allows considerable progress to be made in understanding the plume structure. Some
discussion of the effects of temperature-dependent viscosity can be found in § 6.

Much of the work presented here and in Part 2 is essentially the axisymmetric
version of the two-dimensional planar problem studied by Roberts (1977). However,
the change in geometry has a significant effect on the nature of the solution. This
is mainly attributable to the solutions for the outer flow having differing behavi-
ours near the axis: with a planar geometry, the inner limit of the outer vertical
velocity is essentially independent of the width of the plume; with an axisymmetric
geometry, we have a logarithmic singularity (see § 4) so the plume width is now
coupled directly with the vertical velocity inside the plume. This coupling complicates
the solution somewhat.
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The point-source problem addressed here is also similar to that studied by Worster
(1986) in an infinite fluid. However, the presence of a lower boundary in our problem
means that the introduction of inertial terms in the far field is no longer necessary
to balance the vertical force. This can be understood by considering the flow with
a planar boundary as the sum of that due to the plume’s buoyancy forces in the
absence of the boundary, and that due to an image system below the plane (see § 4.1).
The image system cancels the leading-order Stokeslet terms and causes the far-field
velocity to decay more rapidly. Hence, while Worster’s equations for the inner region
are very similar to those which arise here, there are major differences in the outer
flow, to which the inner solution is matched.

This paper is organized as follows. A detailed description of the problem and some
initial scaling arguments for the main features of the flow are presented in § 2. In § § 3–
5, we solve the problem by matching an inner plume region to an outer isothermal
Stokes flow in an asymptotic solution for a slender plume. Since the slender-body
expansion is only in inverse powers of a logarithm and hence slowly converging, we
take the trouble to calculate the first-order corrections to the leading-order terms.
Finally, some discussion and concluding remarks are presented in § 6. Some of the
techniques developed in this paper are used further in Part 2, in which we consider
the related problem of the flow and temperature fields due to a distributed source.

2. Formulation and scaling
2.1. Governing equations and boundary conditions

We consider a steady vertical plume in the half-space z > 0 above a horizontal
boundary z =0. The plume is generated by a localized source of heat close to the
boundary, and the far field is assumed to be quiescent with a background temperature
T0. Inertial effects are considered to be negligible, and the Boussinesq approximation
employed. We also assume that the kinematic viscosity ν is constant, and that the
plume remains axisymmetric. A sketch of the situation under consideration, along
with the coordinate systems used, is shown in figure 1.

The governing equations are the Stokes equations for incompressible flow, and the
steady advection–diffusion equation for heat. We use b = gβ(T − T0) to describe the
buoyancy distribution, where β is the coefficient of linear thermal expansion and g is
the acceleration due to gravity. The governing equations are thus

ν∇2u = ∇p − bêz, (2.1)

∇ · u = 0, (2.2)

(u · ∇) b = κ∇2b, (2.3)

where êz is the unit vertical vector, κ is the thermal diffusivity, and p is a modified
pressure.

To satisfy the far-field conditions, we require u → 0 and b → 0 as r → ∞ with θ

fixed and 0 <θ � π/2. We shall consider the effect of both rigid (u = 0) and free-slip
(êz · u = 0, êz · ∇u × êz = 0) boundary conditions on the horizontal boundary z = 0.

Conservation of heat allows us to define a vertical buoyancy flux B , which is
independent of the height z. Assuming that vertical advection dominates vertical
diffusion, we have

B = 2π

∫ ∞

0

wb s ds, (2.4)
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where w = u · êz is the vertical velocity, and s is the horizontal radial coordinate. The
invariance of B may be derived from (2.2) and (2.3) by using the boundary conditions
and neglecting κbzz.

Here we consider a point source with a prescribed heat flux, and so B is simply a
fixed parameter of the system. For the distributed source considered in Part 2, B must
be determined by solving a thermal boundary-layer problem in the neighbourhood of
the source.

2.2. Separation of scales

Sufficiently far from the source, we expect a slender thermal plume of typical
radius a(z), surrounded by an outer region in which b ≈ 0. Within the inner plume
region, cylindrical polar coordinates (s, φ, z) are used, and a scaled radial coordinate
ξ = s/a(z) is introduced. For sufficiently large z, it is expected that a(z) � z and
boundary-layer approximations can be employed.

Since the temperature is effectively uniform in the outer region, the velocity there
will be a Stokes flow with zero body force. It is driven only by the effect of the
buoyancy force in the plume, which is transmitted through the matching of the two
regions. We therefore expect the outer flow to have an O(1) aspect ratio, and the use
of spherical polar coordinates (r, θ, φ) is found to be convenient.

Solutions for the inner and outer regions are derived in § 3 and § 4, respectively. The
traction and velocity must be matched between the two regions in an intermediate
zone characterized by θ � 1 and ξ � 1. This is described in § 5.

2.3. Scaling estimates

Simple scaling estimates can be employed to describe the plume. From the advection–
diffusion equation (2.3) and conservation of buoyancy (2.4) we obtain within the
plume

w

z
∼ κ

a2
, wba2 ∼ B, whence b ∼ B

κz
. (2.5a–c)

Slender-body theory (see, for example, Cox 1970; Leal 1992, pp. 247–251) can be
used to provide an estimate for the rise velocity. This is a local calculation based on
a line of Stokeslets with local density F ∼ ba2. The leading-order result that

w ∼ F

2πν
ln

( z

a

)
(2.6)

is unaffected by the precise form of the tangential velocity condition imposed on the
lower boundary. While the tangential component of the boundary condition does not
affect (2.6), the normal component u · êz = 0, which reflects the inhibition of vertical
flow due to the presence of the boundary, is vital. Without something to balance the
vertical force, inertial effects in the far field would dominate, and there would be no
Stokes-flow solution. We would then be back to the situation analysed by Worster
(1986).

Combining (2.5) and (2.6), and introducing a length scale z0 ∝ (νκ2/B)1/2, we
obtain

w ∼
(

B

ν

)1/2 [
ln

( z

a

)]1/2

, F ∼ (Bν)1/2

[ln (z/a)]1/2
, a ∼ (z0 z)1/2

[ln (z/a)]1/4
. (2.7a–c)

Finally, we argue that the vertical velocity inside the plume is dominated by a plug
flow w0(z), with the radial variation w̃(s, z) across the plume having a much smaller
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magnitude. By substituting the scalings for a and b into the Stokes equation (2.1), we
obtain

νw̃

a2
∼ b ⇒ w̃ ∼

(
B

ν

)1/2

[ln (z/z0)]
−1/2 . (2.8)

Therefore w̃ will indeed be much smaller than w0 for z � z0. The separation of
magnitudes, a � z and w̃ � w0, will now be exploited to derive inner and outer
expansions for the plume and the surrounding fluid.

3. The inner solution
3.1. Series expansion

Introducing a Stokes streamfunction, ψ(s, z), we write the horizontal and vertical
velocities inside the plume as

u = u · ês = −1

s

∂ψ

∂z
, w = u · êz =

1

s

∂ψ

∂s
, (3.1)

From the advection–diffusion balance expressed in (2.5a), we expect the plume
radius to scale as a = (4κz/w0)

1/2, where w0(z) is the (as yet unknown) leading-order
vertical velocity, which is horizontally uniform by (2.8). We therefore introduce a
scaled radial variable ξ , defined by

ξ =
s

a
= s

(
w0(z)

4κz

)1/2

. (3.2)

Based on the scalings of § 2.3, we write the streamfunction and buoyancy fields in
terms of ξ and z. It is found to be convenient to keep the factor of 4 with κ , and to
introduce a factor of 2π in the expression for b. We therefore define

ψ = 4κz f (ξ ; z) , b =
B

2π

g(ξ ; z)

4κz
. (3.3a, b)

With the definitions (3.2) and (3.3a), the vertical velocity is given by

w =
w0

ξ

∂f

∂ξ
, (3.4)

so we require f ′(ξ ; z) ∼ ξ at leading order, where a prime (′) denotes differentiation
with respect to ξ . More precisely, we want this to hold as z → ∞ with ξ fixed,
corresponding to an asymptotically uniform vertical flow in each cross-section of the
plume.

The expressions (3.3) for ψ and b are now substituted into the governing equations
(2.1) and (2.3), and the buoyancy normalization (2.4). After applying standard
boundary-layer approximations to neglect the vertical derivatives in the Laplacians
and the vertical gradient of the modified pressure, we obtain

1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

(
1

ξ

∂f

∂ξ

))
= −εg, (3.5)

f ′ (−g + zgz) − (f + zfz) g′ = 1
4
(ξg′)′, (3.6)∫ ∞

0

g f ′ dξ = 1, (3.7)
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where we have also introduced

ε(z) =
B

2πνw2
0

. (3.8)

For ε � 1 it is natural to consider the expansions

f (ξ ; z) = f0(ξ ) + ε(z)f1(ξ ) + O(zεz, ε
2), (3.9)

g(ξ ; z) = g0(ξ ) + ε(z)g1(ξ ) + O(zεz, ε
2). (3.10)

From the previous scalings (2.7), we expect to find that ε(z) ∼ (ln z)−1. For the time
being, we need only assume that zεz � ε to obtain the correct ordering of terms in
the heat equation (3.6). Since ε is expected to be only logarithmically small in z, we
shall calculate both the leading-order and the O(ε) terms.

We note that there are also other eigenmodes of the heat equation (3.6), which are
the product of a negative integer power of z and a function of ξ . These modes are
investigated in Appendix A, where it is argued that they decay algebraically rapidly
with z, and thus become insignificant compared with the terms shown in (3.10).

3.2. The leading-order equations

We now substitute the expansions (3.9) and (3.10) into (3.5)–(3.7). Equating the
leading-order terms in ε, we obtain

1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

(
1

ξ

∂f0

∂ξ

))
= 0, (3.11)

(ξg′
0)

′ + 4(f ′
0g0 + f0g

′
0) = 0, (3.12)∫ ∞

0

g0f
′
0 dξ = 1. (3.13)

The leading-order Stokes equation (3.11) is readily solved to give

f0(ξ ) = 1
2
ξ 2. (3.14)

Two constants of integration are used to satisfy regularity conditions at ξ = 0
(corresponding to no mass source and no forcing singularity), and the third is set by
the requirement that the vertical velocity (3.4) is precisely w0(z) at leading order.

We now substitute f0(ξ ) into (3.12) and (3.13). The leading-order heat equation
(3.12) is integrated to obtain

g0(ξ ) = 2 exp(−ξ 2). (3.15)

One constant of integration is set to avoid a singularity at ξ = 0, and the other so
that the normalization condition (3.13) is satisfied.

Equations (3.14) and (3.15) constitute the leading-order solution for the velocity
and temperature fields inside the plume.

3.3. The first-order equations

Equating the O(ε) terms in (3.5)–(3.7), we obtain

1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

(
1

ξ

∂f1

∂ξ

))
= −g0, (3.16)

(ξg′
1)

′ + 4(f ′
0g1 + f0g

′
1) = −4(f ′

1g0 + f1g
′
0), (3.17)∫ ∞

0

(g0f
′
1 + g1f

′
0) dξ = 1. (3.18)
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Figure 2. The leading and first-order profiles of the dimensionless temperature g and vertical
velocity f ′/ξ within the plume. The two versions of the first-order functions f1 and g1 are
for the values (5.10) of the constant A that arise with free-slip and rigid boundary conditions.
The rigid case corresponds to the lower velocity and higher temperature. Note the logarithmic
behaviour in the velocity f ′/ξ as ξ → ∞.

These are solved in an analogous manner to the leading-order equations (3.11)–(3.13).
Equation (3.16) is integrated to give

f1(ξ ) = 1
2
Aξ 2 − 1

4
ξ 2(2 ln ξ + Ei(ξ 2) + γ − 1) + 1

4
(exp(−ξ 2) − 1), (3.19)

where Ei(x) =
∫ ∞

1
t−1e−xt dt , and γ = 0.5772 . . . is Euler’s constant. As before, two

constants of integration are set by regularity conditions at ξ = 0. The third constant
A sets the magnitude of a vertical plug flow proportional to ε(z), and can be found
only by matching with the outer solution. As we shall see, the value of A depends on
the boundary condition on the tangential velocity (free-slip or rigid) at z =0.

Equation (3.17) can now be integrated subject to the normalization condition (3.18)
to obtain a somewhat complicated closed-form expression for g1(ξ ). A graph of g1

together with the other inner functions is presented in figure 2. Higher-order terms
may also be calculated, but will not be reported here.

Having calculated f0 and f1, we substitute the series (3.9) into (3.4) to obtain

w ∼ w0(z)
[
1 + ε(z)

(
− ln ξ − 1

2
Ei(ξ 2) + A − γ

2

)
+ · · ·

]
. (3.20)

For matching with the outer solution, we require the asymptotic form of this
expression as ξ → ∞. In this respect, observe that Ei(ξ 2) decays exponentially as
ξ−2exp(−ξ 2).

4. The outer solution
4.1. Integral representation

The outer velocity field is completely determined by the buoyancy distribution b(x)
of the inner solution, together with the conditions imposed on the horizontal boun-
dary. The flow field can be expressed in terms of this forcing using an extension to
the standard Stokeslet integral representation.

A general solution for Stokes flows in the presence of a rigid plane boundary was
first given by Lorentz (1907). For a single Stokeslet, Blake (1971) showed that the
flow may be expressed as the sum of a finite number of singularities as shown in
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Stokeslet Stokeslet(a) (b)

Stokeslet Stokeslet Stresslet Rotlet
Source
dipole

S 2d(F × n) –d2F*

+ + +

F

F* –F

F

Figure 3. The image system for a Stokeslet located a distance d above a plane boundary
x · n = 0. The systems for both (a) free-slip and (b) rigid boundary conditions are
shown. The mirrored force is given by F∗ = F · (I − 2nn), and the stresslet moment is
S= − d(F∗n + nF∗ − 2

3
(n · F∗)I).

figure 3 (see also Pozrikidis 1992, § 3.3). Solutions for a buoyancy distribution can
then be constructed by linear superposition as

u(x) =
1

8πν

∫
z′>0

b(x ′) êz · K(x; x ′) d3x ′, (4.1)

where K(x; x ′) = J(x − x ′) + J∗(x − R · x ′). Here, J is the Oseen tensor, given by

J(x) =

(
I

|x| +
xx

|x|3

)
, (4.2)

J∗ is the Green’s function for the corresponding image system at the mirror point
R · x ′, and R = I − 2êz êz is the reflection tensor about z = 0.

For the case that the forcing is everywhere perpendicular to the plane, the image
Green’s function J∗ simplifies somewhat. For the free-slip boundary condition, we
find that êz · J∗(x) = − êz · J(x). For the rigid boundary condition,

êz · J∗(x) = −êz · J(x) − 3(x · S · x)x

|x|5
+ 2z′2 êz ·

(
− I

|x|3
+

3xx

|x|5

)
, (4.3)

where S = 2z′(3êz êz − I)/3 is the stresslet moment and the final term represents a
source dipole. (The absence of a rotlet term in this case may be deduced by symmetry
considerations alone.)

4.2. Multi-pole expansion

Equation (4.1) holds for a general buoyancy distribution, but we now exploit the fact
that the buoyancy in the plume is confined to a narrow region of radius O(a), where
a � z. We can then consider a multi-pole expansion, valid for locations outside the
plume. Since the buoyancy distribution is confined in the radial direction but not
the vertical, we expand in terms of the radial moments, leaving the vertical integrals
intact. We obtain

u(x) =
1

8πν

∫ ∞

0

F (z′) êz · K(x; z′ êz) dz′

+
1

8πν

∫ ∞

0

M(z′) êz · ∇2
hK(x; z′ êz) dz′ + · · · , (4.4)
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where

F (z) = 2π

∫ ∞

0

b(s, z) s ds =
B

w0

∫ ∞

0

g(ξ ; z) ξ dξ, (4.5)

M(z) =
π

2

∫ ∞

0

b(s, z) s3 ds =
B

w0

a2

4

∫ ∞

0

g(ξ ; z) ξ 3 dξ. (4.6)

These moments of the buoyancy distribution may be expanded as series in ε. For
the vertical force density F (which turns out to be of greatest interest), we can use the
normalization integrals (3.13) and (3.18) to evaluate each term Fk without requiring
full knowledge of the corresponding function gk(ξ ). Thus,

F (z) =
B

w0

(∫ ∞

0

g0(ξ ) ξ dξ + ε(z)

∫ ∞

0

g1(ξ ) ξ dξ + · · ·
)

=
B

w0

(
1 − ε(z)

∫ ∞

0

g0(ξ )f ′
1(ξ ) dξ + · · ·

)

=
B

w0

(
1 − ε(z)

(
A − 1

2
ln 2

)
+ · · ·

)
. (4.7)

This manipulation is possible because the leading-order velocity is horizontally
uniform within the plume, and so pairs of terms in the buoyancy flux and force
integrals involve the same moments of gk(ξ ). We can therefore swap the integral of
ξgk(ξ ) for one involving only terms of the form f ′

i (ξ )gj (ξ ) with i � k and j < k. In
particular, the leading-order component F0(z) = B/w0(z) is independent of the radial
structure g(ξ ; z) of the buoyancy distribution. At the next order, it is not necessary
to have found g1 explicitly in order to calculate F1.

4.3. Evaluation of the outer velocity field

The detailed calculation of the outer velocity field is best left until the form of w0(z)
has been determined, and is presented in Appendix B. For now, we concentrate on
the asymptotic form of the outer solution as r/z → 0, since this is all that is required
for matching with the inner solution.

Defining K(s, z; z′) = êz · K(x, z′ êz) · êz, the vertical component of (4.4) is given by

8πν w(s, z) =

∫ ∞

0

F (z′) K(s, z; z′) dz′ +

∫ ∞

0

M(z′) ∇2
hK(s, z; z′) dz′ + · · · . (4.8)

With the free-slip boundary condition

K(s, z; z′) =
s2 + 2(z − z′)2

(s2 + (z − z′)2)3/2
− s2 + 2(z + z′)2

(s2 + (z + z′)2)3/2
, (4.9)

whereas for the rigid case

K(s, z; z′) =
s2 + 2(z − z′)2

(s2 + (z − z′)2)3/2
− s2 + 2(z + z′)2

(s2 + (z + z′)2)3/2
+

2zz′(s2 − 2(z + z′)2)

(s2 + (z + z′)2)5/2
. (4.10)

The first term on the right-hand sides of (4.9) and (4.10) represents a line of
Stokeslets along the plume axis. It is of the same asymptotic form as the integrand
in slender-body theory, and gives a logarithmically large contribution to the velocity.
The second term in each equation represents the image Stokeslet. It cancels the
O(z′−1) behaviour of the Stokeslets, which would otherwise prevent the integrals from
converging as z′ → ∞. For the rigid case, there is also a third term which represents
the higher-order singularities (stresslet and source dipole) in the image system.
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We are interested primarily in the region s � z. Then for |z′ − z| � z, K(s, z; z′)
is dominated by the first term, and so behaves like the usual integrand in slender-
body theory. However, away from this region the decay is faster: as z′ → ∞, we have
K =O(z′−2) for the free-slip case and K =O(z′−3) for the rigid case; as z′ → 0, we
have K =O(z′) for the free-slip case and K = O(z′2) for the rigid case.

From the estimate (2.7a) for w0, we expect F and M to be slowly varying logarithmic
functions of z′. As will be checked later, we therefore make only an asymptotically
small error by approximating F (z′) and M(z′) by their values at z′ = z, where the
dominant contribution to the integrals occurs.

The factors F (z) and M(z) can then be moved outside the integrals, leaving
integrals of K and its horizontal derivatives. These may be evaluated explicitly, and
the behaviour as s/z → 0 determined. We find that∫ ∞

0

K(s, z; z′) dz′ = −4 ln

(
s

z

)
+ 4(ln 2 − δ) + O

(
s2

z2

)
, (4.11)

∫ ∞

0

∇2
hK(s, z; z′) dz′ =

4

z2

[
(1 + 2δ) + O

(
s2

z2

)]
, (4.12)

where δ = 1/2 for the free-slip case, and δ = 1 for the rigid case. The integrals
of higher derivatives of K (corresponding to higher-order moments of the inner
buoyancy distribution) are at most O(z−4).

Combining (4.7), (4.8) and (4.11), we find that

w ∼ B

2πνw0(z)

[
1 − ε(z)

(
A − 1

2
ln 2

)
+ · · ·

][
− ln

(
s

z

)
+ (ln 2 − δ) + · · ·

]
, (4.13)

at the inner edge of the outer solution. To obtain this expression, we have
approximated F (z′) by F (z) as mentioned above, and also neglected any contributions
from terms involving M(z). The errors generated by these and the other approxi-
mations are quantified later.

5. Matching the vertical velocity
The temperature, velocity, and traction from the inner and outer solutions must

now be matched in the intermediate region given by ξ � 1 and θ � 1. However, the
temperature is already taken care of (to the orders in which we are interested) since
it is exponentially small at the outer edge of the inner solution, and is assumed to
be zero throughout the outer solution. The traction is also taken care of, since it is
directly related to the internal buoyancy of the plume, which was used to derive the
outer solution.

This leaves only the velocity to be matched. We need only match the vertical
component, since the horizontal component will follow by incompressibility. Formally,
we should use an intermediate variable for the matching but, for simplicity, we shall
just re-write the outer solution in terms of the inner variables (ξ, z). It will suffice to
keep track of the range of ξ in the matching region, and to ensure that the neglected
terms are strictly smaller than those retained.

5.1. Inner and outer expansions

First, we observe that

s

z
= ξ

(
4κ

zw0

)1/2

= ξε1/4

(
z

z0

)−1/2

, where z0 =

(
32πκ2ν

B

)1/2

. (5.1)
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A quick matching of the leading-order behaviour of the vertical velocity between the
inner (3.20) and outer (4.13) solutions gives

w0(z) ∼ − B

2πνw0

ln

(
s

z

)
= w0ε ln

(
ξ−1ε−1/4

(
z

z0

)1/2
)

, (5.2)

where we have made use of (3.8) which defines ε in terms of w0. We thus obtain
ε(z) ∼ 2 [ln (z/z0)]

−1 and w0(z) ∼ (B/4πν)1/2 [ln (z/z0)]
1/2, which is consistent with the

scaling estimates of § 2.3.
Now the form of ε is known, we are in a position to match the velocities formally,

ordering the various terms correctly. Note that the matching region corresponds to
a � s � z, or equivalently 1 � ξ � ε−1/4(z/z0)

1/2.
From (3.20), we obtain

w

w0

∼ 1 − ε ln ξ + ε
(
A − γ

2

)
+ · · · , (5.3)

at the outer edge of the inner plume solution. The correction terms are O(ε2) from
neglecting terms f2 and above, O(ε ξ−2e−ξ 2

) from the large-ξ approximation, and
O(ξ 2ε1/2z0/z) from the use of a boundary-layer approximation within the plume.

From the inner limit of the outer solution (4.13), we obtain

w

w0

∼ 1
2
ε ln

(
ε−1/2 z

z0

)
− ε ln ξ

+ ε(ln 2 − δ) − 1
2
ε2

(
A − 1

2
ln 2

)
ln

(
ε−1/2 z

z0

)
+ · · · . (5.4)

The correction terms are O(ε2) from the remaining contribution to F1, O(ε3 ln(z/z0))
from higher-order terms in the expansion of F , O(ξ 2ε1/2z0/z) from the truncation of
the expansion of the K integral, O(ε1/2z0/z) from neglecting the contribution from
M and higher moments, and O(ε/ ln(z/z0)) from approximating F (z′) by F (z).

By a slight narrowing of the matching region to ε1/2 � ξ � ε3/4(z/z0)
1/2, we can

ensure that the errors in the inner and outer expansions are all O(ε2) or smaller. This
allows us to match (5.3) and (5.4) up to O(ε).

5.2. Formal matching

Comparing the leading-order terms in (5.3) and (5.4), we obtain

1 = 1
2
ε ln

(
ε−1/2 z

z0

)
+ O(ε). (5.5)

Note that we have some freedom in choosing ε to satisfy this equation, since any
O(ε) discrepancy is permitted. We make the most simple and convenient choice by
defining ε(z) to be the smaller of the two roots of

2

ε
+ 1

2
ln ε = ln

(
z

z0

)
, (5.6)

(assuming that z/z0 � 2
√

e). Different choices would only change ε slightly (the
difference not appearing until the third term in the expansion (5.7)). They would also
result in an extra term appearing in the O(ε) matching below, which in turn would
alter the value of A given in (5.10). However, when the full solution is reconstructed
these two effects necessarily cancel each other out.
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Figure 4. The dimensionless leading-order radial velocity as a function of polar angle (see
Appendix B). The dimensional form is given by ur (r, θ ) ∼ B1/2[4πν ln(r/z0)]

−1/2 Ψ ′
0(θ )/ sin θ .

Note the logarithmic divergence as θ → 0.

Expanding ε in powers of ln(z/z0), we obtain

ε(z) =
2

ln(z/z0)

(
1 − ln ln(z/z0)

2 ln(z/z0)
+

ln 2

2 ln(z/z0)
+ · · ·

)
, (5.7)

and from (3.8), the corresponding series for w0 is

w0(z) =

(
B ln(z/z0)

4πν

)1/2 (
1 +

ln ln(z/z0)

4 ln(z/z0)
− ln 2

4 ln(z/z0)
+ · · ·

)
. (5.8)

The ln ξ terms in (5.3) and (5.4) match already, because we have already matched
the vertical force F (z) (to leading order) between the inner and outer solutions.
Equating the remaining O(ε) terms in (5.3) and (5.4), we obtain

A − γ

2
= ln 2 − δ −

(
A − 1

2
ln 2

) [
1
2
ε ln

(
ε−1/2 z

z0

) ]
. (5.9)

Noting that the factor in square brackets is equal to unity by our choice of ε, we
deduce that

A = 1
4
(γ + 3 ln 2 − 2δ) . (5.10)

Recall that γ is Euler’s constant, while δ = 1/2 for the free-slip boundary condition,
and δ = 1 for the rigid case. As would be expected on physical grounds, the free-slip
case has a slightly larger vertical velocity, but a slower rate of increase of this velocity
as the plume rises away from the boundary.

We have now determined ε(z), w0(z) and A by matching. Substituting these
expressions back into the results of § 3, we obtain the inner solution explicitly, accurate
to O(ε). The full outer solution is derived to the same accuracy in Appendix B. The
leading-order radial velocity is shown in figure 4, and streamlines for the outer flow
are shown in figure 5.

6. Discussion and concluding remarks
6.1. Summary

In this paper, we have studied the form of an axisymmetric plume rising from a point
source above a plane boundary in very viscous fluid. We find a vertical length scale
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Figure 5. Stream-lines for the outer flow, including the zeroth and first-order terms
((B14)–(B18). (a) Corresponds to the free-slip boundary condition, whereas (b) is for the
rigid case. Note that, since we are in an axisymmetric geometry, the velocities near the axis
are higher than might initially be inferred from the stream-line separations (see figure 4).

z0 = (32πκ2ν/B)1/2, which is the scale on which advection becomes comparable with
diffusion, and also on which the plume has an O(1) aspect ratio. We have derived an
asymptotic solution valid for z � z0 by matching a slender plume region to the flow
induced in the surrounding fluid. The plume width a is found to increase with height as
(z0z)

1/2 [ln (z/z0)]
−1/4, and the typical vertical velocity in plume w0 increases slowly as

(B/ν)1/2 [ln (z/z0)]
1/2. The condition on the tangential velocity at the lower boundary

is found to have no effect on the leading-order terms, and enters only at first order
in a slender-body expansion in inverse powers of ln(z/z0). We have calculated these
first-order correction terms for both rigid and free-slip boundary conditions. Since
slender-body expansions are only slowly converging, the second-order corrections
may be a few per cent even at z = 100z0.

The vertical velocity within the plume has two distinct components. First, there is
a horizontally uniform component w0. This is required to match the velocity in the
outer fluid, which in turn is a global response to the buoyancy forces inside the plume.
Secondly, there is a non-uniform component w̃, which is driven directly by the local
buoyancy forces in the plume (via the Stokes equation). With the uniform viscosity
considered here, the facts that the plume is slender and that w (and its derivative)
must be matched to an outer flow with O(1) aspect ratio means that w0 � w̃ and
the uniform component dominates. This was shown in § 2.3, and underpins the series
expansion in ε that is used in this analysis.

6.2. Effects of temperature-dependent viscosity

If the viscosity decreases with temperature, then w̃ will have a larger curvature and is
able to be larger near the centre of the plume without increasing the shear stress near
the edge. It is now quite possible that w̃ will dominate w0 in a central region near
the axis (see figure 6). With a sufficiently large viscosity contrast, this central region
can provide the main contributions to the vertical heat and mass fluxes. The uniform
component w0 (and hence the whole outer flow and associated matching problem)
can then be neglected. This case of strong viscosity variation has been studied by
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(a) (b) (c)

Figure 6. Expected vertical velocity profiles within a plume with (a) uniform viscosity, and
(b, c) with increasing temperature-dependent viscosity contrasts. The velocity profiles are shown
normalized by the centreline velocity. However, it may be more natural to consider the uniform
component (which is set mainly by the outer viscosity) to have the same order of magnitude
in some comparisons of the three cases.

Loper & Stacey (1983) and Olson et al. (1993), under the approximation that the
narrow inner conduit sees little radial variation in temperature.

The method employed in the present work can easily be extended to cover the case
of weak viscosity variation in which w̃ � w0 still holds. The leading-order result is
unaltered, but many of the integrals for the first-order corrections would need to be
calculated numerically. It would be more interesting to consider the intermediate case
(depicted in figure 6b) where w0 and w̃ are comparable, since this regime covers the
transition from large viscosity contrast to uniform viscosity.

We note, however, that as z increases both the aspect ratio of the plume and the
centreline temperature decrease. These effects both serve to decrease the magnitude
of the non-uniform component w̃ relative to the uniform component w0. Thus, for
sufficiently large z, any plume should be well approximated by the uniform viscosity
solution obtained here.

6.3. Consideration of inertial effects

Unlike the case of an isolated plume (see Worster 1986), we have obtained a solution
without the necessity of including inertial effects in the far field. Nevertheless, if the
Prandtl number is finite, inertia starts to play a role sufficiently far from the source.

The vertical velocity within the plume increases logarithmically with height. This is
compensated for by the increasingly parallel nature of the flow, such that the effective
Reynolds number (wwz)/(ν∇2

h w̃) in the plume is O(Pr−1) (see equations (2.7) and
(2.8)) and hence small. However, outside the plume, the increasing length scale r

of the flow dominates the slow logarithmic decrease of the velocity, so that inertial
effects must be reintroduced in the external flow when

r

z0

≈ Pr (lnPr)1/2 . (6.1)

It should be noted that the inertial corrections at very large distances do not
have a leading-order effect on the flow within the radius given by (6.1), in much
the same way that the Oseen correction for a translating sphere does not affect the
Stokes solution near the sphere. The solution described in this paper is thus the
appropriate asymptotic description out to r = O(z0Pr(lnPr)1/2); at greater distances,
inertial effects influence the velocity outside the plume and the appropriate description
is that of Worster (1986).
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Appendix A. Eigenmode corrections to a Gaussian buoyancy distribution
The temperature distribution in the plume is a result of advective and diffusive

effects acting on the initial temperature profile emerging from the source. As we
observed in § 3, at leading order the advective effects correspond to those due to a
uniform flow. We therefore expect the details of the initial profile to be lost as z

increases, and the temperature distribution to relax towards the Gaussian form (3.15).
In § 3, it was reasonably clear that the leading-order solution to (3.5) for ε � 1

should be f0 = ξ 2/2 corresponding to uniform flow. It was less clear that the leading-
order solution to (3.6) for g should also be independent of z, as assumed in (3.10). If
we relax this assumption, then we obtain the equation

(ξg′
0)

′ + 4ξ
(
g0 − zg0z

)
+ 2ξ 2g′

0 = 0. (A 1)

The general solution of (A 1) that is regular at ξ = 0 and decays as ξ → ∞ may be
written as the sum of separable solutions

g0(ξ ; z) =

∞∑
n=0

αn

zn
Gn(ξ ) exp(−ξ 2), (A 2)

where

G′′
n +

(
1

ξ
− 2ξ

)
G′

n + 4nGn = 0. (A 3)

Equation (A 3) is the two-dimensional analogue of the Hermite equation, which
arises in separable solution of the diffusion equation in one and three dimensions. With
a suitable normalization, the functions Gn are related to the Laguerre polynomials
Ln by Gn(ξ ) = Ln(ξ

2), and are thus polynomials of degree 2n which are orthogonal
on (0, ∞) with weight function ξexp(−ξ 2). The first few are

G0(ξ ) = 1, G1(ξ ) = 1 − ξ 2, G2(ξ ) = 1 − 2ξ 2 + 1
2
ξ 4. (A 4)

The analysis of § 3 is based on retaining only the z-independent mode n= 0. The
physical significance of the other modes is that they describe diffusive relaxation of g0

with z from some initial profile towards the Gaussian profile (3.15). We note that there
is a near-source region at the base of the plume of size a ∼ z ∼ z0 in which the full
Stokes and heat equations (2.1) and (2.3) must be solved. Treating the temperature
profile emerging from this region as the initial profile for g0, we find that αn =O(zn

0)
and hence the neglected modes decay as (z0/z)

n for n � 1. Since the slender-body
expansion of the flow is in inverse powers of ln(z/z0), these algebraically decaying
modes are asymptotically negligible.

The diffusive relaxation of the temperature distribution is more significant in the
case of a distributed source studied in Part 2. There we find a critical height z∗, which
is much larger than the length scale of the source. For z � z∗, the heat equation
is dominated by advective terms, and diffusive effects only re-enter at z = O(z∗).
The eigenmode expansion (A 2) describes the diffusive relaxation of the plume for
z � z∗and provides an alternative to the solution by a Green’s function (see the
Appendix of Part 2).

Appendix B. Calculation of the full outer velocity field
Having determined ε(z), w0(z) and A in § 5 (see equations (5.7), (5.8) and (5.10)),

the interior buoyancy distribution is known explicitly up to first order as a function
of s and z. Using a suitable expansion in inverse powers of ln(r/z0), it is now possible
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to calculate the first few terms in an expansion of the outer velocity field u(r, θ). We
work from the multi-pole expansion (4.4) and the expression

F (z) =

(
4πνB

ln(z/z0)

)1/2 (
1 − ln ln(z/z0)

4 ln(z/z0)
+

δ − 1
2
γ − 1

4
ln 2

ln(z/z0)
+ · · ·

)
, (B 1)

for the Stokeslet line-density, which is derived from (4.7). The contributions from M(z)
and higher moments are algebraically small in r/z, and so can safely be neglected
outside the plume.

We note that, unlike the planar case analysed by Roberts (1977) and the convection
cell of Umemura & Busse (1989), the vertical force in the plume has a non-
trivial dependence on z, and the calculation of the external flow is therefore more
complicated.

Only one velocity component needs to be found directly from (4.4); the full flow-field
can then be recovered using incompressibility. We choose the horizontal component
u = u · ês because the individual terms in its integral decay most rapidly, and there is
no need to rely on inter-term cancellations to obtain convergence.

After changing variables to the more natural spherical polar coordinates (r, θ, φ),
we obtain

u(r, θ) ∼ 1

8πν

∫ ∞

0

F (Xr) Θ(θ, X) dX, (B 2)

where X = z′/r , and for the free-slip boundary condition

Θ(θ, X) =
sin θ(cos θ − X)

(1 − 2X cos θ + X2)3/2
− sin θ(cos θ + X)

(1 + 2X cos θ + X2)3/2
, (B 3)

while for the rigid boundary condition

Θ(θ, X) =
sin θ(cos θ − X)

(1 − 2X cos θ + X2)3/2
− sin θ(cos θ − X)

(1 + 2X cos θ + X2)3/2

− 6 sin θ cos θ(cos θ + X)X

(1 + 2X cos θ + X2)5/2
. (B 4)

In both cases, the form of Θ(θ, X) is such that the dominant contribution to the
integral occurs at X = O(1) (i.e. z′ =O(r)) rather than X � 1 or X � 1. Physically,
this is because of the near cancellation of the Stokeslet and its image for points much
closer or farther away from the origin than the point (r, θ) under consideration. We
therefore expand F (Xr) for z0/r � X � r/z0, using (B 1) and

[ln (Xr/z0)]
α = [ln (r/z0)]

α

(
1 +

α ln(X)

ln(r/z0)
+ · · ·

)
. (B 5)

It is this step that was not possible in § 4 before the form of ε, w0, and hence F were
known.

Equation (B 2) is then rewritten as a series of integrals, whose dependence on r can
be separated from the integrands. We obtain

u(r, θ) ∼
(

B

16πν ln(r/z0)

)1/2{
U0(θ)

(
1 − ln ln(r/z)

4 ln(r/z0)

)
+

U1(θ)

ln(r/z0)
+ · · ·

}
, (B 6)

where

U0(θ) =

∫ ∞

0

Θ(θ, X) dX, (B 7)
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U1(θ) = −1

2

∫ ∞

0

Θ(θ, X) lnX dX +
(
δ − 1

2
γ − 1

4
ln 2

)
U0(θ). (B 8)

For the free-slip case we obtain

U0(θ) = −2 sin θ, (B 9)

U1(θ) = − sin θ ln
(

1
2
sin θ

)
+

(
δ − 1

2
γ − 1

4
ln 2

)
U0(θ), (B 10)

whereas for the rigid case

U0(θ) = −2 sin θ +
2(1 − cos θ)2

sin θ
, (B 11)

U1(θ) = − sin θ ln
(

1
2
sin θ

)
+

(1 + cos θ)2

sin θ
ln

(
cos 1

2
θ
)

+
(1 − cos θ) cos θ

sin θ
+

(
δ − 1

2
γ − 1

4
ln 2

)
U0(θ). (B 12)

The Stokes streamfunction Ψ (r, θ) is obtained from u by integration of

u =
1

r2

∂Ψ

∂θ
− cos θ

r sin θ

∂Ψ

∂r
. (B 13)

Since there is no vertical flow across the horizontal boundary θ = π/2, we may impose
Ψ (r, π/2) = 0 without loss of generality. This condition determines the constant of
integration, and we obtain

Ψ (r, θ) =

(
B

4πν ln(r/z0)

)1/2

r2

{
Ψ0(θ)

(
1 − ln ln(r/z0)

4 ln(r/z0)

)
+

Ψ1(θ)

ln(r/z0)
+ · · ·

}
. (B 14)

With the free-slip boundary condition, we have

Ψ0(θ) = sin2 θ ln cot 1
2
θ, (B 15)

Ψ1(θ) = − sin2 θ

(
ln

(
tan 1

2
θ
)
ln

(
sec 1

2
θ
)

+ 1
2
Li2

(
− tan2 1

2
θ
)

+
π2

24

)
+

(
δ − 1

2
γ − 1

4
ln 2

)
Ψ0(θ), (B 16)

whereas for the rigid case

Ψ0(θ) = sin2 θ ln cot 1
2
θ − (1 − cos θ) cos θ, (B 17)

Ψ1(θ) = − sin2 θ

(
ln

(
tan 1

2
θ
)
ln

(
sec 1

2
θ
)

+ 1
2
Li2

(
− tan2 1

2
θ
)

+
π2

24

)
− cos θ(1 + cos θ) ln

(
cos 1

2
θ
)

+
(
δ − 1

2
γ − 1

4
ln 2

)
Ψ0(θ) , (B 18)

where Li2(z) =
∫ 0

z
t−1 ln(1−t) dt is a dilogarithm. As before, δ = 1/2 and 1, respectively,

for the free-slip and rigid boundary conditions. The stream-lines of this outer flow are
plotted for each boundary condition in figure 5. The leading-order radial velocity is
shown in figure 4. It may be verified that the vertical velocity computed from (B 14)
is consistent with the asymptotic limit for θ � 1 which was derived in § 4.3.

By repeating the calculations above with F (z) = F0, it is easy to show that the
stream function for a uniform Stokeslet line-density along the axis is given by

Ψ (r, θ) =
F0

4πν
r2 Ψ0(θ), (B 19)
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where Ψ0(θ) is as defined in (B 15) or (B 17) depending on the lower boundary
condition. Therefore, at the point (r0, θ0), the leading-order outer velocity for a point-
source plume is equal to the velocity that would occur there when driven by a uniform
Stokeslet distribution along the axis with line-density F0 = F (r0). This reinforces the
earlier observation that the leading-order contribution to the velocity at radius r

comes from the forcing on the axis at height z = O(r). This is expected to hold
for any logarithmically slowly varying Stokeslet distribution along the axis, i.e. the
leading-order streamfunction for such a distribution F(z) is given by

Ψ (r, θ) ∼ F(r)

4πν
r2 Ψ0(θ). (B 20)

We shall make use of this result in Part 2.
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